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The Riemann HypothesisThe Riemann Hypothesis

Let s be a complex number with Re(s)>1. Then the Riemann zeta 
function is defined by

and is extended to the rest of the complex plane (except for s=1) 
by analytic continuation.

The Riemann Hypothesis (formulated in 1859) asserts that all 
nontrivial zeros of the zeta function are on the critical line (1/2+it 
where t is a real number).

The last 140 years did not bring its proof or disproof. In 2000, 
Clay Mathematics Institute offered a $1 million prize for proof of 
the Riemann Hypothesis. 
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Proved Facts about Riemann's HypothesisProved Facts about Riemann's Hypothesis

Infinitely many zeros lie on the critical line.

At least 40% of all nontrivial zeros lie on the critical line.

All first 75 billion zeros are simple and lie on the critical line, 
thus, the Riemann Hypothesis is true at least for all
 |Im(s)| < 22,455,199,960.64. 
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History of Computed Zeros (Part I)History of Computed Zeros (Part I)

Year Author Number of zeros
1903 J. P. Gram 15
1914 R. J. Backlund 79
1925 J. I. Hutchinson 138
1935 E. C. Titchmarsh 1,041
1953 A. M. Turing 1,104
1955 D. H. Lehmer 10,000
1956 D. H. Lehmer 25,000
1958 N. A. Meller 35,337
1966 R. S. Lehman 250,000
1968 J. B. Rosser, J. M. Yohe, L. Schoenfeld 3,500,000
1977 R. P. Brent 40,000,000
1979 R. P. Brent 81,000,001
1982 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter 200,000,001
1983 J. van de Lune, H. J. J. te Riele 300,000,001
1986 J. van de Lune, H. J. J. te Riele, D. T. Winter 1,500,000,001
2001 J. van de Lune 10,000,000,000
2002 S. Wedeniwski 50,631,912,399
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History of Computed Zeros (Part II)History of Computed Zeros (Part II)

In 1988, a faster method for simultaneous computation of large 
sets of zeros of the zeta function was invented by
A. M. Odlyzko and A. Schönhage.

It has been implemented and used to compute 175 × 106 zeros 
near zero number 1020 (1992),

10 billion zeros near zero number 1022 (2001),

and about 20 billion zeros near zero number 1023 (2002).
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The Function The Function Z(t)Z(t)

Let

and

Then the function Z(t) is real for real t, and
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The Riemann-Siegel Formula (Part I)The Riemann-Siegel Formula (Part I)

Let t be a real number,

Then the Riemann-Siegel formula with four terms in the 
asymptotic expansion is 
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The Riemann-Siegel Formula (Part II)The Riemann-Siegel Formula (Part II)

Here the Φj(z) are certain entire functions which may be 
expressed by

Φj(z) can be expressed by the Taylor series expansions.
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Gram PointsGram Points

Let m ≥ -1 be an integer. The mth Gram point gm is defined as a 
unique solution of the equation

Thus, e.g.,
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The Zeros of The Zeros of Z(t)Z(t)

The first 11 non-
trivial zeros:

ρ1 ≈ 1/2 + 14.135i
ρ2 ≈ 1/2 + 21.022i
ρ3 ≈ 1/2 + 25.011i
ρ4 ≈ 1/2 + 30.425i
ρ5 ≈ 1/2 + 32.935i
ρ6 ≈ 1/2 + 37.586i
ρ7 ≈ 1/2 + 40.919i
ρ8 ≈ 1/2 + 43.327i
ρ9 ≈ 1/2 + 48.005i
ρ10 ≈ 1/2 + 49.774i
ρ11 ≈ 1/2 + 52.970i
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Using Rosser Blocks to Find Sign Changes of Using Rosser Blocks to Find Sign Changes of 
Z(t), Part IZ(t), Part I

Let m ≥ -1 be an integer.
Gram's law is the observation of J. P. Gram (1903) that Z(t) 
usually changes sign in each Gram interval

Gm=[gm, gm+1[ .

This suggested "law," as J. P. Gram himself suspected, is false 
although the first failure does not occur until the Gram point g125 
≈ 280.80.
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Using Rosser Blocks to Find Sign Changes of Using Rosser Blocks to Find Sign Changes of 
Z(t), Part IIZ(t), Part II

J. B. Rosser, J. M. Yohe and L. Schoenfeld introduced (1968) the 
concept of Rosser blocks as Rosser's rule to handle the failures 
of Gram's law.
The first exeption is B13,999,525 ≈ 6,820,050.98.

A Rosser block of length k is an interval
Bm=[gm, gm+k[ such that (-1)mZ(gm) > 0, (-1)m+kZ(gm+k) > 0
and (-1)m+lZ(gm+l) < 0  for 1 ≤ l < k and k ≥ 1.

We say that Bm satisfies Rosser's rule if Z(t) has at least k zeros in 
Bm.

Rosser's rule fails infinitely often (R. S. Lehman 1970), but it is 
still an extremely useful heuristic. Using this rule, we achieved 
the average number 1.26 of Z-evaluations which is needed to 
separate a zero from its predecessor.
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BB50,366,441,415 50,366,441,415 is the First Rosser Block of Length 11is the First Rosser Block of Length 11

The Rosser block B50,366,441,415 has a zero-pattern '01131111110.'



IBM Germany

Determining all Zeros of Determining all Zeros of ζζ((ss))

Let N(T) denotes the number of nontirvial zeros of ζ(s) in the 
region 0 < Im(s) ≤ T, and

Gram's law holds in regions where |S(t)| < 1, and Rosser's rule 
holds in regions where |S(t)| < 2.
We have S(gk) ≈ 3.0214 for k = 53,365,784,979
and S(gk) ≈ -3.2281 for k = 67,976,501,145.

R. P. Brend (1979) showed the following theorem, based on an 
idea of J. E. Littlewood and a theorem of A. M. Turing:

If K consecutive Rosser blocks with union [gm, gn[ satisfy 
Rosser's rule, then

N(gm) ≤ m+1  and  N(gn) ≥ n+1. 
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Computational AspectsComputational Aspects

About 99.7% of the running time was spent on evaluating the 
sum

ln(k) is looked up in a precomputed table.
θ(t) is evaluated one time per sum with twice the precision of 
IEEE double (106 mantissa bit).

In our program we used a very fast and efficient method and a 
comperatively slow (factor 120) but very accurate method. Both 
methods give the correct sign of Z(t) if the evaluated lower and 
upper bound has the same sign.

In the fast method, the cosine-values are approximated by the 
table of cos(2π ⋅ k/220), 0 ≤ k ≤ 220, and we have the unit roundoff ε 
:= 2-63 using accurate IEEE floating-point arithmetic.
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Computing Rigorous the Lower and Upper Computing Rigorous the Lower and Upper 
Bound of Bound of ZZ((tt))

Let l(t, k) := (t ⋅ ln(k) - θ(t)) mod 2π
and let l'(t, k) be the computed value of l(t, k). Than we can show 
that

|l(t, k) - l'(t, k)| < 5ε = 5⋅2-63 or     |l(t, k) - l'(t, k) - 2π| < 5ε.

Let c'(k) be the approximated cosine-values for 0 ≤ k ≤ 220. Then 
the lower bound of Z(t) is evaluated by

and the higher bound by
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Statistic Concerning Rosser BlocksStatistic Concerning Rosser Blocks

The following tables gives the number of Rosser blocks of 
length k ≤ 4 in the interval [g0, g75,039,937,803[ for strings of 1010 
successive Gram intervals J(k, n+1010)-J(k, n):

where J(k, n) gives the number of Rosser blocks Bj of length k 
with 1 ≤ j < n.
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Zero-Patterns of the Rosser Blocks (Part I)Zero-Patterns of the Rosser Blocks (Part I)

Let M(P) be the set of all Rosser blocks with the zero-pattern P. 
Then the following three tables give the number and the first 
occurrences of a Rosser block with zero-pattern P in the interval 
[g0, g75,039,937,803[:
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Zero-Patterns of the Rosser Blocks (Part II)Zero-Patterns of the Rosser Blocks (Part II)

1981 J. van de Lune, H. J. J. te Riele and D. T. Winter suggested 
the following heuristic:
Searching the "missing two zeros" is performed in zig-zag 
manner, moving from the periphery of the block towards its 
center.
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Zero-Patterns of the Rosser Blocks (Part III)Zero-Patterns of the Rosser Blocks (Part III)
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Close ZerosClose Zeros

B60,917,681,408, the Rosser block containing the closest observed pair 
of zeros

The distance between these two zeros is less than 0.0001008.
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History and Milestones of ZetaGridHistory and Milestones of ZetaGrid

Feb. 1998 to Nov. 2001: Working on the necessity of the 
Extended Riemann Hypothesis for Miller's primality test
(Dissertation "Primality Tests on Commutator Curves")

February 2001: First implementation of ZetaGrid and 
synchronization with the Fortran-Code of J. van de Lune,
H. J. J. te Riele, D. T. Winter

August 2001: Starting ZetaGrid on 10 computers in IBM 
Laboratory Böblingen

February 2002: Distributing ZetaGrid on 500 computers in IBM 
Germany

September 2002: Availibility of ZetaGrid in the internet at
http://www.zetagrid.net
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Idea: Use Idle Resources ...Idea: Use Idle Resources ...

About 90% of the CPU capability of 
an office computer is unused.

Room for additional computations

CPU power is available for free

Central control, simple 
administration, good scalability

 ...Over the ...Over the
        Internet        Internet
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ZetaGridZetaGrid
Runs as screen saver or low-priority process 
on Windows / AIX / Linux (also z-Series).
Downloads 'tasks' using just the HTTP 
protocol and computes them on the local 
computer.
Flexible embedding of tasks via API.
Secured server, back-end database DB2, 
monitoring, statistics, and full audit trail are 
available.
Security protocols and methods for 
authorization (tasks, results).
Proven and stable, runs at IBM Lab with about 
600 participating computers without any 
problems to compute mathematical problems 
(Riemann Hypothesis).
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ZetaGrid System ArchitectureZetaGrid System Architecture

Web Application 
Server

Database 
Server

TCP/IP

TCP/IP

TCP/IP

Linux Client

Windows Client

AIX Client

TCP/IP
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ZetaGrid Security ArchitectureZetaGrid Security Architecture

Task / Work Unit
Farm

Result-Verifier
Archive

Monitoring

CustomerBackup

Dispatcher

Result
Manager

Resource Provider

Privacy

HTTP-Browser

HTTP-Browser

"Grid"
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Performance CharacteristicsPerformance Characteristics

Participating in ZetaGrid (8/6/2002):
288 users and 679 computers

1.3 × 1018 floating-point operations (8/6/2002) for calculating more than 97 
billion zeros of the Riemann zeta function in 342 days

~44 GFLOPS
~50 hours maximal performance of IBM ASCI White, 8192 Power3 375 MHz 
processors (place 1, 11/2001, www.top500.org)
~165 years maximal performance of one Intel Pentium 4 with 2 GHz processors, 
250 MFLOPS

Day with best performance (1/31/2002):
7 × 1015 floating-point operations for calculating more than 642 million zeros
~81 GFLOPS

Hour with best performance (5/6/2002, 9:00-9:59 a.m.):
6.62 × 1014 floating-point operations
~184 GFLOPS (place 184, 11/2001, www.top500.org)
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Progress of the ComputationProgress of the Computation
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Number of ComputersNumber of Computers
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Supported Computer ArchitecturesSupported Computer Architectures
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Questions / DiscussionQuestions / Discussion

Dr. Sebastian Wedeniwski
wedeniws@de.ibm.com


